Q:

Which ordered pairs are solutions to the inequality V – 2x <-3?Select each correct answer.

Accepted Solution

A:
Answer:The solutions presented in the choice are (5,-3) and (1,-1).Step-by-step explanation:You could plug the points in and see which satisfies the inequality (makes the inequality true).So the inequality is:[tex]y-2x \le -3[/tex]Let's check (x,y)=(0,-2):[tex]-2-2(0) \le -3[/tex][tex]-2 \le -3[/tex] is false since -2 is more than -3.Let's check (x,y)=(-6,-3):[tex]-3-2(-6) \le -3[/tex][tex]-3+12 \le -3[/tex][tex]9 \le -3[/tex] is false since 9 is more than -3.Let's check (x,y)=(5,-3):[tex]-3-2(5) \le -3[/tex][tex]-3-10 \le -3[/tex][tex]-13 \le -3[/tex] is true.Let's check (x,y)=(7,12):[tex]12-2(7) \le -3[/tex][tex]12-14 \le -3[/tex][tex]-2 \le -3[/tex] is false since -2 is more than -3.Let's check (x,y)=(1,-1):[tex]-1-2(1) \le -3[/tex][tex]-1-2 \le -3[/tex][tex]-3 \le -3[/tex] is true since -3=-3.So the solutions presented in the choice are (5,-3) and (1,-1).